

ОТЧЕТ

по результатам выполнения работы:

«Разработка типовых акустических решений для офисных помещений с применением панелей TAGinterio»

Исполнитель: ООО «АС-Акустик»

Заказчик: ИП Авчян Т.Г.

Специалист-акустик

Инженер-акустик

/Алешкин В.М./

/Стукало А.А./

Москва

2025

			21				
Изм. Лист		Подписк	Lama			14	
Акустик	Алешкин	ML	09.2025		Литера	Лист	Листов
Инженер	Стукало	Comp	09.2025	Отчет по результатам разработки		1	57
		J		типовых акустических решений для			
H. Koump.				переговорной	AC	· AKV	СТИК
Утв						4 444 5	- 1 7114

Оглавление

Введение	3
1. Описание помещений	4
2. Постановка требований к акустике помещений	7
2.1. Время реверберации	7
2.2. Индекс передачи речи	9
3. Методика акустического анализа	.11
4. Описание акустических решений и результаты расчетов д	ΙЛЯ
помещений с потолком из железобетона	.13
4.1. Помещение №1 (4 стены из ГКЛ)	. 18
4.2. Помещение №2 (3 стены из ГКЛ, 1 стена из остекления)	.21
4.3. Помещение №3 (2 стены из ГКЛ, 2 стена из остекления)	. 24
5. Описание акустических решений и результаты расчетов д	ĮЛЯ
помещений с типовым подвесным потолком	.27
5.1. Помещение №1 (4 стены из ГКЛ)	. 28
5.2. Помещение №2 (3 стены из ГКЛ, 1 стена из остекления)	.31
5.3. Помещение №3 (2 стены из ГКЛ, 2 стена из остекления)	. 34
Заключение	.37
Литература	.38

Введение

Целью работы является разработка типовых архитектурно-акустических решений для офисных помещений (переговорных) с использованием акустических материалов TAGinterio, с выполнением подтверждающих расчетов методом компьютерного акустического моделирования.

Отчет состоит из 5 основных разделов.

В разделе 1 представлено описание модельных помещений и используемых акустических материалов.

В разделе 2 перечислены существующие рекомендации и требования к акустическим параметрам помещений.

В разделе 3 описана методика акустического анализа.

В разделах 4-5 последовательно приводится описание акустических решений и результаты акустических расчетов (без акустических панелей и с акустическими панелями): в разделе 4 — для модельного помещения с потолком из железобетона, в разделе 5 — для модельного помещения с подвесным потолком.

1. Описание помещений

К анализу принимается типовая модель переговорной комнаты прямоугольной формы, размерами (Д х Ш): 6,0 х 4,0 м и высотой 3,5 м.

Объем данной модели составляет 80 м^3 . Площадь всех поверхностей составляет 129 м^2 . В центре помещения располагается стол размерами $1,0 \times 3,0 \times 0,75 \text{ м}$ и 6 кресел (стульев).

Пол — линолеум либо ламинат. Потолок рассматривается в двух вариантах: а) окрашенное железобетонное перекрытие (см. анализ в разделе 4); б) стандартный подвесной потолок из жестких панелей толщиной 12 мм из спрессованного минерального волокна с гладким окрашенным покрытием (поверхностная масса около 3 кг/м², средний коэффициент звукопоглощения около 0,15) (см. анализ в разделе 5).

Стены – окрашенный ГКЛ либо фасадное остекление, в одной из стен располагается входная дверь размерами $1,0 \times 2,2 \text{ м}$.

В рамках работы для каждого из покрытий потолка анализируются 3 варианта исходного помещения переговорной (см. иллюстрации на рис.1.1):

- <u>Помещение №1</u>: все стены выполнены из ГКЛ (рис.1.1, а);
- <u>Помещение №2</u>: 3 стены выполнены из ГКЛ, 1 стена полностью представляет собой остекление (рис.1.1, б);
- <u>Помещение №3</u>: 2 стены выполнены из ГКЛ, 2 смежных стены полностью представляют собой остекление (рис.1.1, в).

В качестве решений, применяемых для коррекции акустики помещений, применяются панели TAGinterioTM PET art. Панели общей толщиной 58 мм представляют собой основу из ПЭТ-войлока с заполнением внутренней полости стекловолокнистыми плитами. Типовые размеры панелей – 1085 x 585 мм. Максимальные размеры панелей – 2000 x 585 мм.

Акустические решения разрабатывались исходя из панелей с типовыми размерами и возможности их размещения вплотную к стене (отдельно или сплошным поясом), а также в виде горизонтально подвешенных «островов» к потолку (только для ж/б перекрытия). Вид панелей показан на рис.1.2.

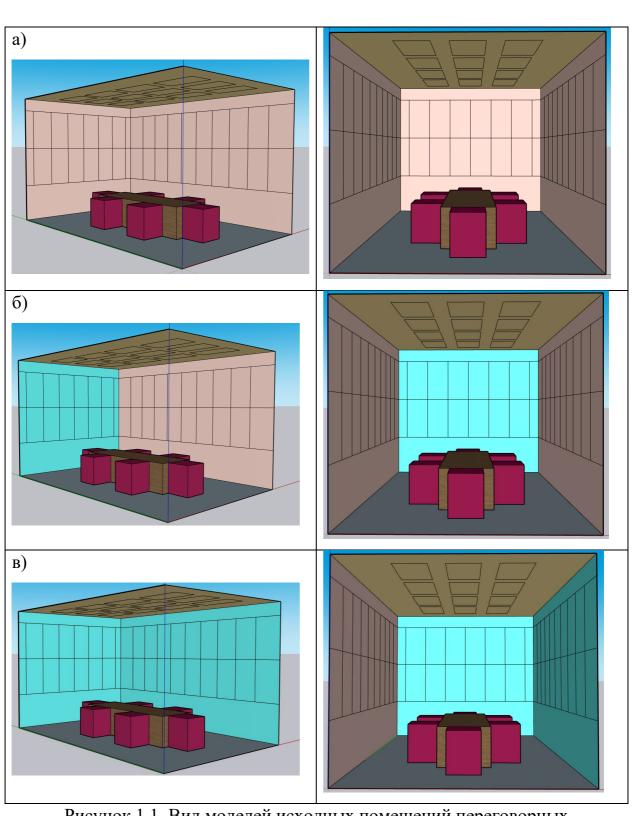


Рисунок 1.1. Вид моделей исходных помещений переговорных

Рисунок 1.2. Вид акустических панелей TAGinterio™ PET art

2. Постановка требований к акустике помещений

2.1. Время реверберации

Основным нормируемым критерием акустики помещений является стандартной реверберации RT_{60} (далее время реверберации). Оптимальные значения этого акустического параметра для помещений различного объема и функционального назначения в РФ определяются разделом 13 свода правил [1]. При этом в данном документе отсутствуют нормативные требования к таким помещениям, как офисные помещения и переговорные. Наиболее близким типом помещений является категория «5» на диаграмме с объемными оптимумами времени реверберации в разделе 13 («лекционные, конференц-залы...»), однако она размечена только для объема выше 500 м³, поэтому значения для меньших объемов приходится определять путем экстраполяции по соответствующим формулам, что может быть не вполне корректно с учетом назначения помещений и их относительно небольшого объема. Исходя из объема модельной переговорной в 80 м³, экстраполяция данных требований приводит к значению оптимума времени реверберации 0,55 с в диапазоне 500-1000 Гц.

Дополнительно был произведен обзор технической литературы, международных и национальных стандартов в области акустики [2-9], выдержки из которых в части оптимумов времени реверберации также приведены в таблице 2.2. В немецком стандарте DIN [2] приводятся объемные оптимумы для помещений речевого назначения, которые задают значения несколько меньше, чем свод правил [1], составляя около 0,45 с.

В остальных рассмотренных стандартах рекомендованное время реверберации для залов совещаний, переговорных и залов для видеоконференцсвязи задается не в виде объемных оптимумов, а в виде верхней границы либо диапазона рекомендованных значений. В обзор вошли технические стандарты международных гостиничных сетей Accor Hotels [4] и Hilton [5], в которых присутствуют акустические требования к общественным зонам, в частности к конференц-залам и переговорным; международный

стандарт ISO [3], посвященный офисным помещениям типа "open space", в котором также присутствуют требования по акустике для отдельных офисных помещений, в т.ч. с видеоконференцсвязью; стандарты в области акустики, применяемые в Великобритании [6], Австралии и Новой Зеландии [7,8] и Гонконге [9].

По сумме рассмотренных источников можно заключить, что оптимум времени реверберации лежит в диапазоне от 0,3 до 0,8 с. Целевые значения, принятые при разработке акустических решений на основе различных требований, приведены в последнем столбце таблицы 2.2 и составляют 0,4...0,6 с.

Пределы отклонений по частотной характеристике времени реверберации определены согласно требованиям свода правил [1], согласно которому отклонение от установленных оптимумов должно находиться в пределах $\pm 10\%$, отклонение частотной характеристики от горизонтальной формы должно сохраняться в следующих пределах: в октавных полосах 125—250 Γ ц подъем не более чем на 20%; в октавных полосах 2—4 к Γ ц спад не более чем на 10%.

Кроме того, согласно своду правил [1], необходимо рассчитать так называемую «критическую» частоту, выше которой следует анализировать время реверберации в помещении. Для принятого модельного помещения переговорной объемом 80 м³ данная частота составляет около 198 Гц. Таким образом, значения времени реверберации, рассчитанные в октавных полосах 125 и 250 Гц (либо 1/3-октавных полосах ниже 200 Гц) следует считать условными, так как фактически затухание звука ниже данной частоты будет определяться собственными резонансами помещения (структурой звукового поля в низкочастотном диапазоне), что характерно для помещений малого объема.

2.2. Индекс передачи речи

Индекс STI (Speech Transmission Index), передачи речи характеризующий разборчивость речи, передающейся от источника звука Соответствие (исполнителя) слушателю. качественной К оценки разборчивости речи и значений STI приведены в таблице 2.2.1, согласно международному стандарту [10].

Таблица 2.2.1. Критерии оценки индекса передачи речи STI

Значения STI	Качественная оценка				
0.76-1.00	«Отлично»				
0.61-0.75	«Хорошо»				
0.46-0.60	«Удовлетворительно»				
0.31-0.45	«Плохо»				
0.00-0.30	«Неприемлемо»				

Положительными значениями считаются значения STI > 0.61 («хорошо»- «отлично»).

Расчет данного параметра производился с учетом моделирования источника звука с уровнем громкости, спектральным составом и громкостью, приближенными к речи человека и характерным уровнем фоновых шумов в офисных помещениях.

Таблица 2.2. Оптимальные значения времени реверберации для помещения переговорной

№	Помещение	Объем	Оптимальное время реверберации ^і RT60 (T30), с								
		V, M^3	СП	DIN	ISO	ACCOR	HILTON	BB93,	AS/NZS	HK-BEAM	Принятый
			51.13330.	18041-	22955:2021	Hotels	(Hotels)	BS8233	2107:2000,	4/04 "New	при
			2011 [1]	2016	(open office	Technical	Brand	(Велико-	JCU Design	Buildings",	расчетах
			(РФ)	(Германия)	spaces)	Standard.	Standarts -	британия)	Guidelines	Гонконг	оптимум
				[3], A3	[4], Tab. 1-3	Acoustics [5]	Europe	[7]	(Австралия,	[10]	(500-1000
							[6]		Новая		Гц)
									Зеландия)		
									[8,9]		
					Среднее по	«Многофунк-	«Meeting/	Meeting room,	«Video-	Office	
	Модельное помещение переговорной на 6 человек				полосам	циональные	function	interviewing/	conferencing	premises,	
					частот 500-	и конференц-	room»,	counselling	room»:	private	
					2000 Гц:	залы»	500-2000	room, video	0,30,7 ^{ii, iii}	offices,	
1		ной на 6	0,55 iv	0,45	< 0,5	(±20%):	Гц:	conference	«Senior staff	conference	0,40,6
					125 Гц:	125-250: 1,1	≤ 0,8	room:	(individual)	rooms:	
					≤ 0,8	500-1000: 0,8		≤ 0,8 ⁱⁱ	office»,	≤ 0,6 ^{ii, iii}	
						2-4 кГц: 0,7			«Counselling		
									Office»:		

 $^{^{\}rm i}$ по умолчанию подразумевается среднее значение из октавных полос частот 500-1000 Γ ц, если не указано дополнительно

 $^{^{\}rm ii}$ среднее по октавным полосам $500-2000~\Gamma\rm ц$

ііі согласно документу, допустимы более высокие значения RT60, на основании рекомендаций консультанта по акустике

 $^{^{\}mathrm{iv}}$ экстраполяция графика в разделе 13 СП 51.13330, допуски в частотном распределении $\pm 10\%$, подъем до 20% в полосах 125-250 Гц, спад до 10% в полосах 2000-4000 Гц

3. Методика акустического анализа

Анализ акустики помещений выполнялся на компьютерной модели помещений в программном комплексе AFMG EASE версии 5 с расчетным модулем AURA.

Характеристики отделочных материалов брались из базы данных EASE, справочной литературы, а также протоколов лабораторных испытаний, предоставленных производителем.

Исследование проводилось для расчётных точек, распределённых по зоне прослушивания. Расчёты параметров выполнялись с помощью модуля AURA (на основе трассировки лучей), входящего в состав EASE 5.72. Время реверберации определялось также с помощью модуля AURA.

В качестве источника звука при расчётах времени реверберации и индекса передачи речи применялся источник со сферической диаграммой направленности, размещенный не менее чем в 2 положениях в помещении, на высоте 1.5 м.

Вид типовой акустической модели переговорной с размещением источников звука и расчетных зон в ПО EASE приводятся на рисунке 3.1.

Для модели каждого из помещений производился расчет времени реверберации Т30 и индекса STI в режиме без акустического оформления, а затем с учетом разработанных мероприятий по размещению на стенах и потолке акустических панелей TAGinterio.

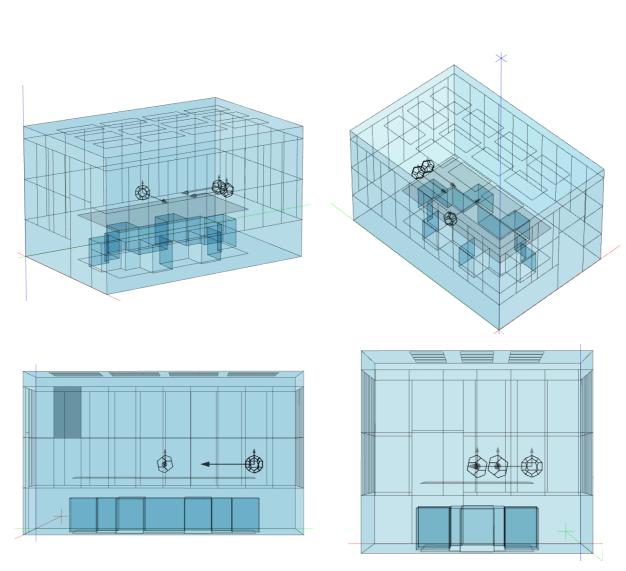


Рис. 3.1. Изометрия и сечения компьютерной акустической модели переговорной в ПО AFMG EASE.

4. Описание акустических решений и результаты расчетов для помещений с потолком из железобетона

В настоящем разделе приводится акустический анализ для модели переговорной с железобетонным потолком.

На рисунке 4.1 представлены результаты расчётов для исходной отделки для трёх помещений (см. п. 1). Как видно из графика, исходная отделка не обеспечивает оптимальных требований к времени реверберации для всех трёх помещений.

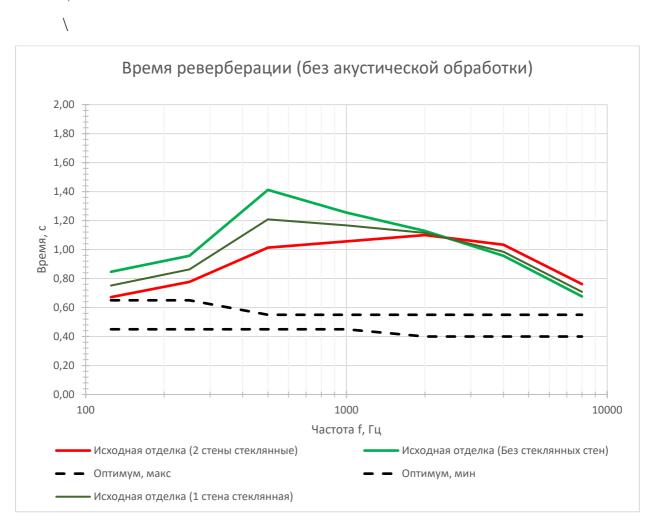


Рис. 4.1. Время реверберации (T30) для трёх рассматриваемых помещений с исходной отделкой

Для улучшения акустических качеств помещений разработаны следующие рекомендации:

• На потолке рекомендуется разместить панели TAGinterioTM PET art в виде подвесных «островов» размерами 1085x585x58 мм на относе около 200 мм с шагом 300 мм по ширине помещения и 220 мм по длине помещения. На рис. 4.2 представлены изометрические виды и схемы размещения потолочных панелей в ПО SketchUp, а также вид акустической модели на панели TAGinterioTM PET art в ПО AFMG EASE;

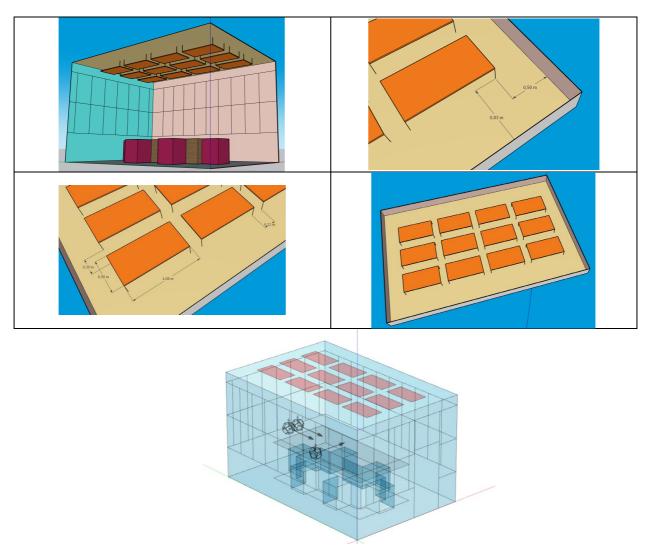


Рис. 4.2. Изометрические виды и схемы размещения панелей TAGinterioTM PET art при размещении на потолке в ПО SketchUp и AFMG EASE

• При отделке стен рассмотрено два варианта решений. Первый подразумевает расположение панелей ТАGinterio™ PET art 1085x585x58 мм в виде «пояса» на высоте 1000 мм от пола (см. рис. 4.3-4.4,а). Второй вариант подразумевает расположение панелей ТАGinterio™ PET art 1085x585x58 мм в шахматном порядке на высоте 1000 мм от пола для нижнего ряда и 2085 мм для верхнего ряда (см. рис. 4.3-4.4,б).

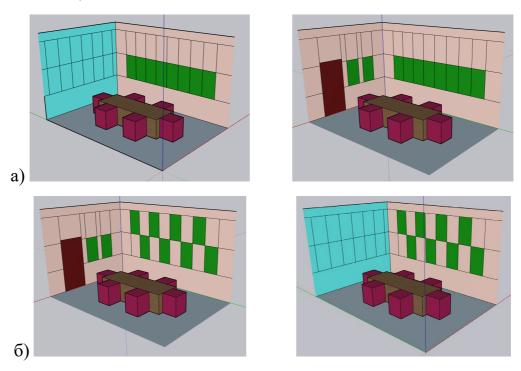


Рис. 4.3. Изометрические виды панелей TAGinterioTM PET art при размещении на стенах в виде пояса (а) и в шахматном порядке (б) в ПО SketchUp

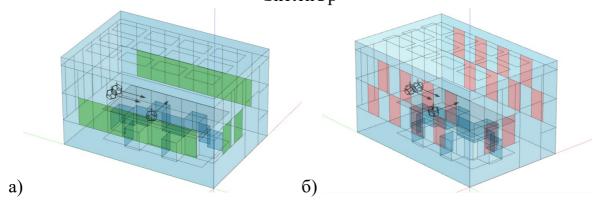


Рис. 4.4. Изометрические виды панелей TAGinterioTM PET art при размещении на стенах в виде пояса (а) и в шахматном порядке (б) в ПО AFMG EASE

На рис. 4.5 представлены результаты расчётов в сравнении с заданным «коридором» оптимальных значений для следующих вариантов акустической отделки:

- 1) Размещение акустической отделки только на потолке (зелёный цвет);
- 2) Размещение акустической отделки только на стенах в виде «пояса» (фиолетовый цвет);
- 3) Размещение акустической отделки только на стенах в шахматном порядке (красный цвет);
 - 4) Размещение акустической отделки на стенах и потолке (синий цвет).

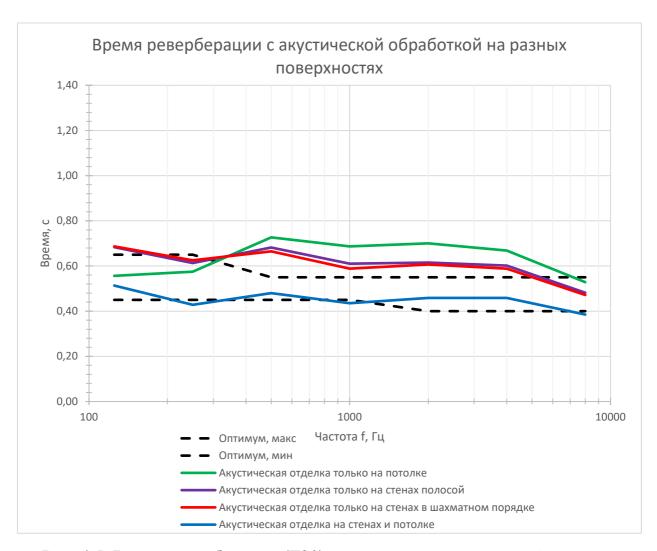


Рис. 4.5. Время реверберации (Т30) с вариантами акустической отделки

По рис. 4.5 видно, что «коридору» оптимальных значений в достаточной мере соответствует только акустическое решение, включающее в себя размещение панелей ТАGinterioTM PET art как на потолке, так и на стенах. Неравномерное размещение отделки - «только на потолке» или «только на стенах» - не обеспечивает достаточного соответствия с «коридором» оптимальных значений.

Рекомендованным акустическим решением является совместное размещение панелей TAGinterioTM PET art как на потолке, так и на стенах. Данные решения подробно представлено в разделах 4.1-4.3 для трех вариантов модельного помещения с ж/б потолком:

- №1 4 стены из ГКЛ;
- №2 3 стены из ГКЛ, 1 стена остекление;
- №3 2 стены из ГКЛ, 2 стены остекление.

4.1. Помещение №1 (4 стены из ГКЛ)

Помещение №1: 4 стены из ГКЛ

Вариант акустической отделки А1:

Потолок — штукатурка по бетону и 12 панелей TAGinterio $^{\text{TM}}$ PET art в виде подвесных «островов» на относе около 200 мм от потолка

Стены – ГКЛ и 18 панелей ТАGinterio TM PET art

Количество панелей на стенах - $18 \, \text{шт.} \, (11,43 \, \text{м}^2)$

Количество панелей на потолке - $12 \text{ шт.} (7,62 \text{ м}^2)$

Размер панелей: 1085 x 585 x 58 мм

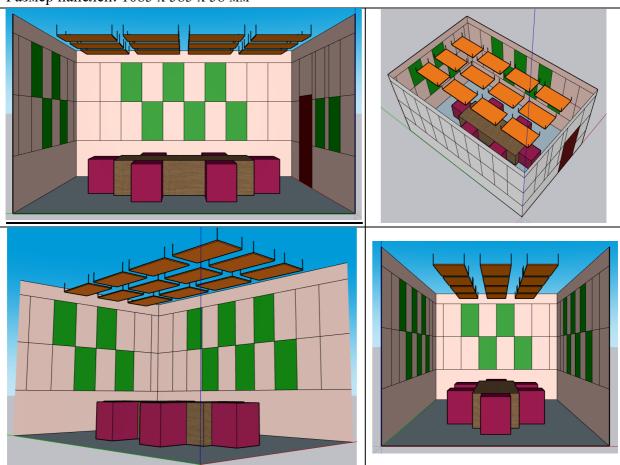


Рис.4.1.1. Вид модели переговорной с учетом акустического решения. Вариант А1.

- зеленый стеновые панели TAGinterioTM PET art;
- **оранжевый** потолочные панели TAGinterio™ PET art в виде подвесных «островов» на относе около 200 мм от потолка

Помещение №1: 4 стены из ГКЛ

Вариант акустической отделки А1:

Потолок — штукатурка по бетону и 12 панелей TAGinterio $^{\text{TM}}$ PET art в виде подвесных «островов» на относе около 200 мм от потолка

Стены – ГКЛ и 18 панелей TAGinterio™ PET art

Расчетное время реверберации

Время реверберации (Т30) в области средних частот (500-1000 Гц):

Без акустических панелей: 1,33 с

С акустическими панелями: 0,46 с

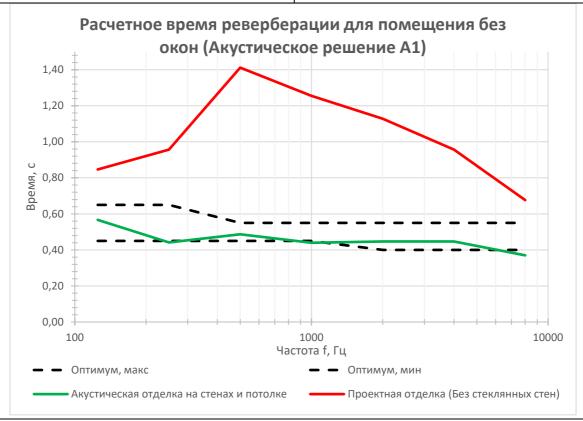
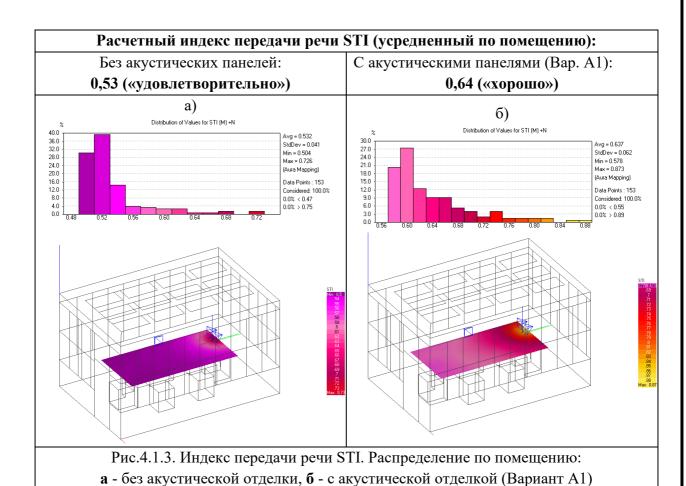



Рис.4.1.2. Время реверберации Т30 в октавных полосах частот. Расчетные значения без акустической отделки и с акустической отделкой (Вар.А1) в сравнении с коридором оптимумов.

4.2. Помещение №2 (3 стены из ГКЛ, 1 стена из остекления)

Помещение №2: 3 стены из ГКЛ / 1 стена с остеклением

Вариант акустической отделки А2:

Потолок — штукатурка по бетону и 12 панелей TAGinterio PET art в виде подвесных «островов» на относе около 200 мм от потолка

Стены – ГКЛ и 18 панелей TAGinterioTM PET art

Количество панелей на стенах - $18 \, \text{шт.} \, (11,43 \, \text{м}^2)$

Количество панелей на потолке - $12 \text{ шт.} (7,62 \text{ м}^2)$

Размер панелей: 1085 x 585 x 58 мм

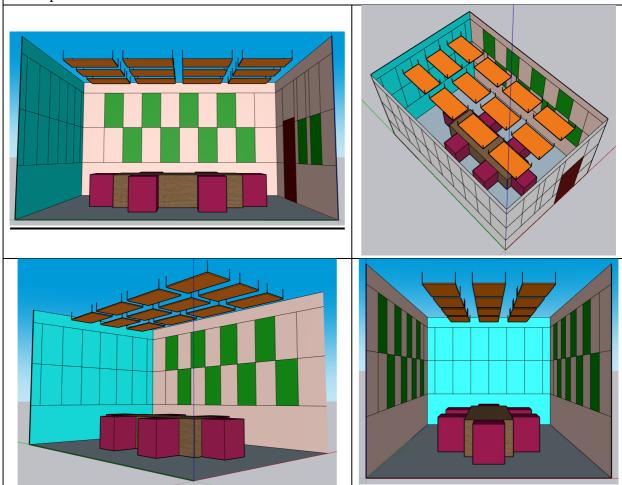


Рис.4.2.1. Вид модели переговорной с учетом акустического решения. Вариант А2.

- зеленый стеновые панели TAGinterioTM PET art;
- **оранжевый** потолочные панели TAGinterioTM PET art в виде подвесных «островов» на относе около 200 мм от потолка

Помещение №2: 3 стены из ГКЛ / 1 стена с остеклением

Вариант акустической отделки А2:

Потолок — штукатурка по бетону и 12 панелей TAGinterio $^{\text{TM}}$ PET art в виде подвесных «островов» на относе около 200 мм от потолка

Стены – ГКЛ и 18 панелей TAGinterioTM PET art

Расчетное время реверберации

Время реверберации (Т30) в области средних частот (500-1000 Гц):

Без акустических панелей: 1,19 с

С акустическими панелями: 0,46 с

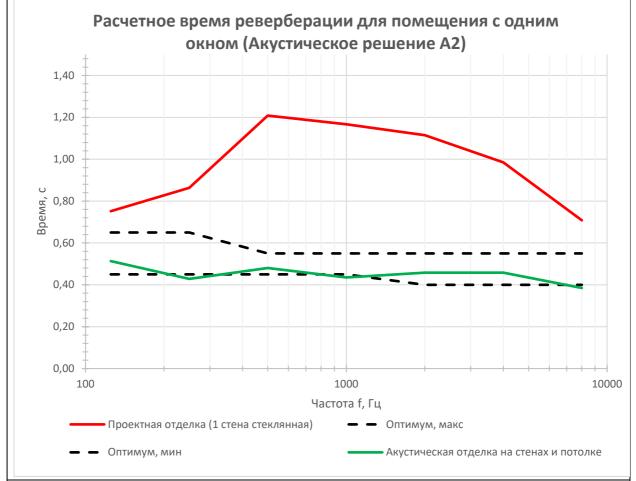


Рис.4.2.2. Время реверберации Т30 в октавных полосах частот. Расчетные значения без акустической отделки и с акустической отделкой (Вар.А2) в сравнении с коридором оптимумов.

4.3. Помещение №3 (2 стены из ГКЛ, 2 стена из остекления)

Помещение №3: 2 стены из ГКЛ / 2 стены с остеклением

Вариант акустической отделки А3:

Потолок — штукатурка по бетону и 12 панелей TAGinterio PET art в виде подвесных «островов» на относе около 200 мм от потолка

Стены – ГКЛ и 12 панелей TAGinterio $^{\text{TM}}$ PET art

Количество панелей на стенах - $12 \, \text{шт.} \, (7,62 \, \text{м}^2)$

Количество панелей на потолке - $12 \text{ шт.} (7,62 \text{ м}^2)$

Размер панелей: 1085 x 585 x 58 мм

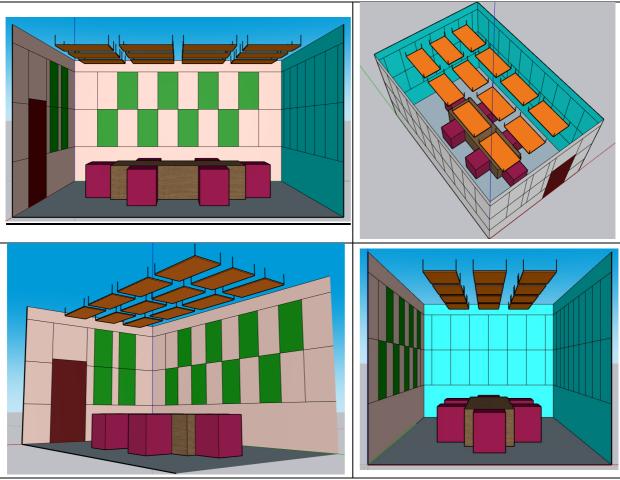


Рис.4.3.1. Вид модели переговорной с учетом акустического решения. Вариант А3.

- зеленый стеновые панели TAGinterioTM PET art;
- **оранжевый** потолочные панели TAGinterioTM PET art в виде подвесных «островов» на относе около 200 мм от потолка

Помещение №3: 2 стены из ГКЛ / 2 стены с остеклением

Вариант акустической отделки А3:

Потолок — штукатурка по бетону и 12 панелей TAGinterio PET art в виде подвесных «островов» на относе около 200 мм от потолка

Стены – ГКЛ и 12 панелей TAGinterioTM PET art

Расчетное время реверберации

Время реверберации (Т30) в области средних частот (500-1000 Гц):

Без акустических панелей: 1,04 с

С акустическими панелями: 0,46 с

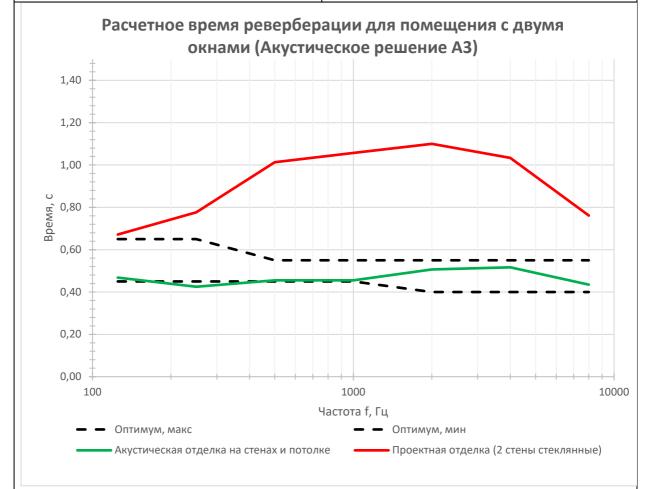


Рис.4.3.2. Время реверберации Т30 в октавных полосах частот. Расчетные значения без акустической отделки и с акустической отделкой (Вар.А3) в сравнении с коридором оптимумов.

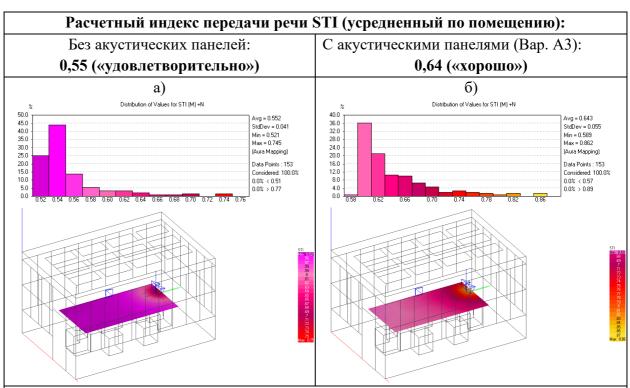


Рис.4.2.3. Индекс передачи речи STI. Распределение по помещению: **a** - без акустической отделки, **б** - с акустической отделкой (Вариант А3)

5. Описание акустических решений и результаты расчетов для помещений с типовым подвесным потолком

В данном разделе представлены результаты расчётов для помещений с типовым подвесным потолком. Акустические решения подробно представлены в разделах 5.1-5.3 для помещений без стеклянных стен, с одной и двумя стеклянными стенами.

На рисунке 5.1 представлены результаты расчётов для исходной отделки для трёх помещений (см. п. 1). Как видно из графика, исходная отделка не обеспечивает оптимальных требований к времени реверберации для всех трёх помещений.

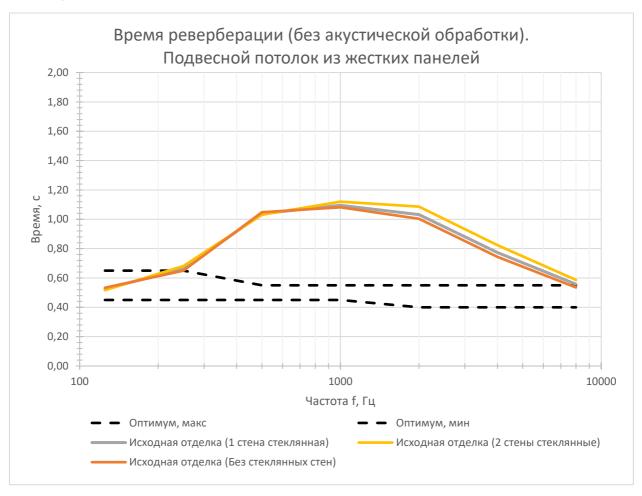


Рис. 5.1. Время реверберации (Т30) для трёх рассматриваемых помещений с исходной отделкой

5.1. Помещение №1 (4 стены из ГКЛ)

Помещение №1: 4 стены из ГКЛ

Вариант акустической отделки Б1:

Потолок — жесткие подвесные панели из спрессованного минерального волокна толщиной 12 мм с гладким окрашенным покрытием

Стены – ГКЛ и 20 панелей TAGinterioTM PET art

Количество панелей на стенах - $20 \text{ шт. } (12,6 \text{ м}^2)$

Размер панелей: 1085 x 585 x 58 мм

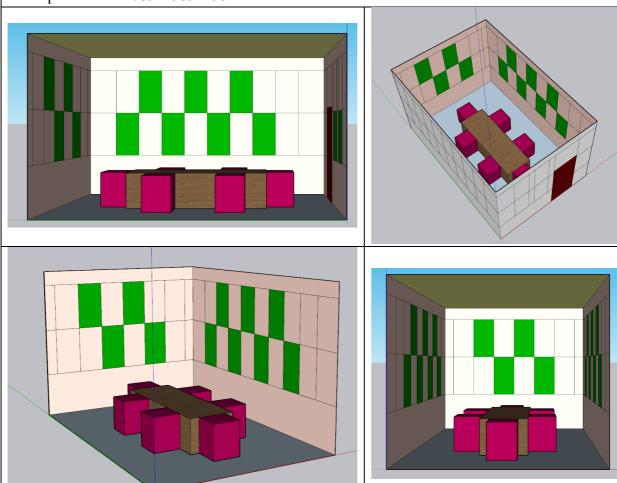


Рис.5.1.1. Вид модели переговорной с учетом акустического решения. Вариант Б1. - зеленый – стеновые панели TAGinterioTM PET art;

Помещение №1: 4 стены из ГКЛ

Вариант акустической отделки Б1:

Потолок – жесткие подвесные панели из спрессованного минерального волокна толщиной 12 мм с гладким окрашенным покрытием

Стены – ГКЛ и 20 панелей TAGinterioTM PET art

Расчетное время реверберации

Время реверберации (Т30) в области средних частот (500-1000 Гц):

Без акустических панелей: 1,07 с

С акустическими панелями: 0,54 с

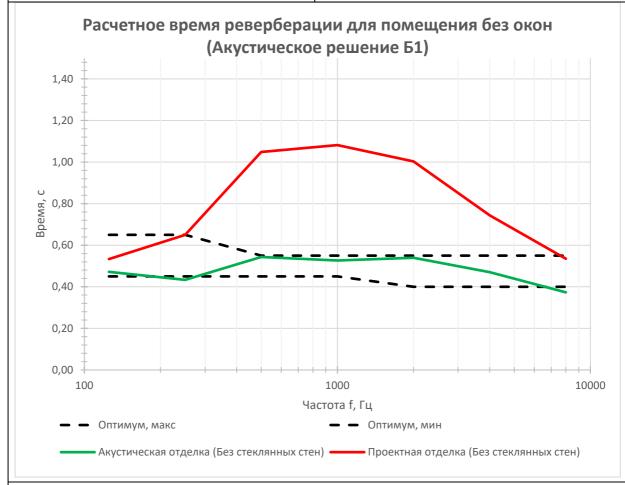
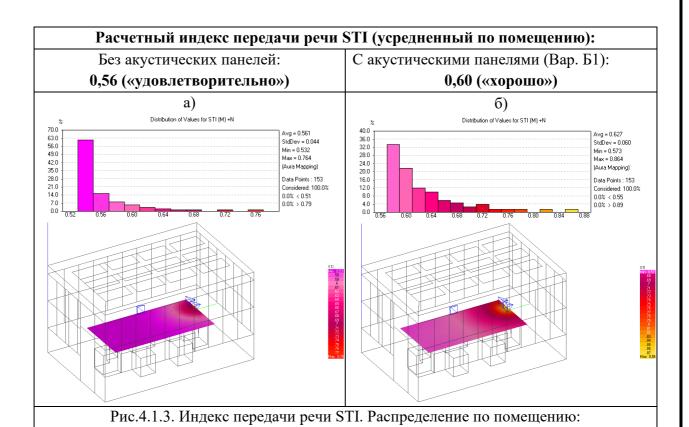
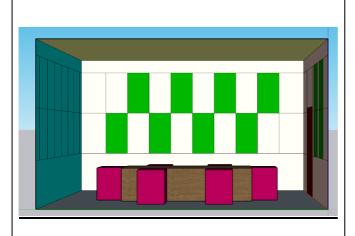



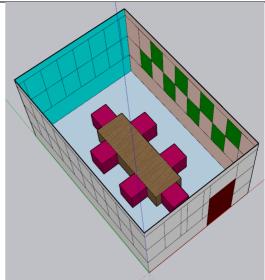
Рис. 5.1.2. Время реверберации Т30 в октавных полосах частот. Расчетные значения без акустической отделки и с акустической отделкой (Вар. Б1) в сравнении с коридором оптимумов.

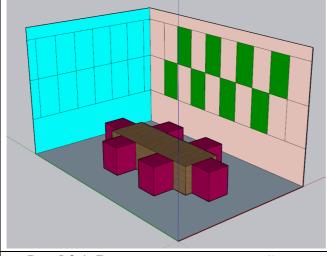
а - без акустической отделки, б - с акустической отделкой (Вариант Б1)

5.2. Помещение №2 (3 стены из ГКЛ, 1 стена из остекления)

Помещение №2: 3 стены из ГКЛ / 1 стена с остеклением


Вариант акустической отделки Б2:


Потолок — жесткие подвесные панели из спрессованного минерального волокна толщиной 12 мм с гладким окрашенным покрытием


Стены – ГКЛ и 20 панелей ТАGinterio $^{\text{TM}}$ PET art

Количество панелей на стенах - 20 шт. (12,6 м2)

Размер панелей: 1085 х 585 х 58 мм

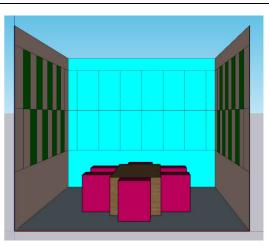


Рис.5.2.1. Вид модели переговорной с учетом акустического решения. Вариант Б2. - **зеленый** — стеновые панели TAGinterioTM PET art;

Помещение №2: 3 стены из ГКЛ / 1 стена с остеклением

Вариант акустической отделки Б2:

Потолок — жесткие подвесные панели из спрессованного минерального волокна толщиной 12 мм с гладким окрашенным покрытием

Стены – ГКЛ и 20 панелей TAGinterioTM PET art

Расчетное время реверберации

Время реверберации (Т30) в области средних частот (500-1000 Гц):

Без акустических панелей: 1,07 с

С акустическими панелями: 0,54 с

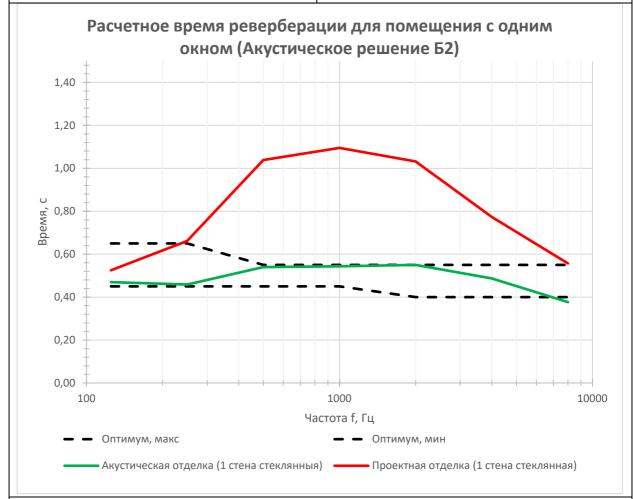
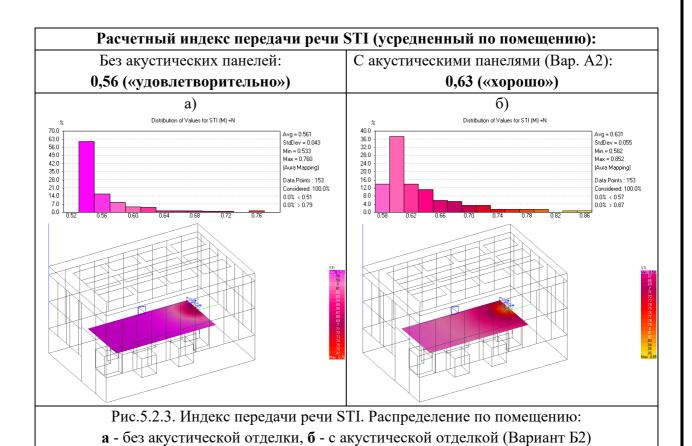



Рис. 5.2.2. Время реверберации Т30 в октавных полосах частот. Расчетные значения без акустической отделки и с акустической отделкой (Вар. Б2) в сравнении с коридором оптимумов.

5.3. Помещение №3 (2 стены из ГКЛ, 2 стена из остекления)

Помещение №3: 2 стены из ГКЛ / 2 стены с остеклением

Вариант акустической отделки Б3:

Потолок — жесткие подвесные панели из спрессованного минерального волокна толщиной 12 мм с гладким окрашенным покрытием

Стены – ГКЛ и 20 панелей ТАGinterio $^{\text{TM}}$ PET art

Количество панелей на стенах - 20 шт. (12,6 м2)

Размер панелей: 1085 х 585 х 58 мм

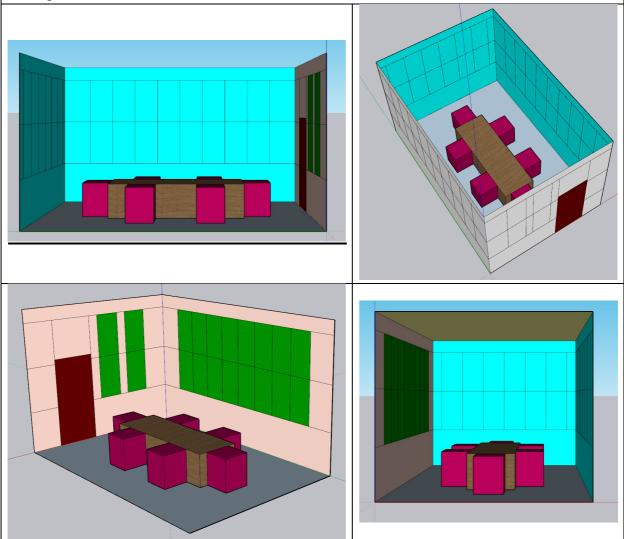


Рис.5.3.1. Вид модели переговорной с учетом акустического решения. Вариант Б3. - зеленый – стеновые панели TAGinterioTM PET art;

Помещение №3: 2 стены из ГКЛ / 2 стены с остеклением Вариант акустической отделки Б3:

Потолок — жесткие подвесные панели из спрессованного минерального волокна толщиной 12 мм с гладким окрашенным покрытием

Стены – ГКЛ и 20 панелей TAGinterio™ PET art

Расчетное время реверберации

Время реверберации (Т30) в области средних частот (500-1000 Гц):

Без акустических панелей: 1,08 с С акустическими панелями: 0,54 с

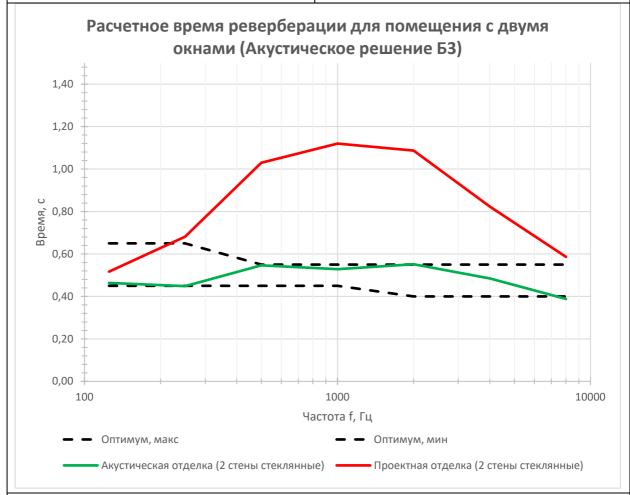
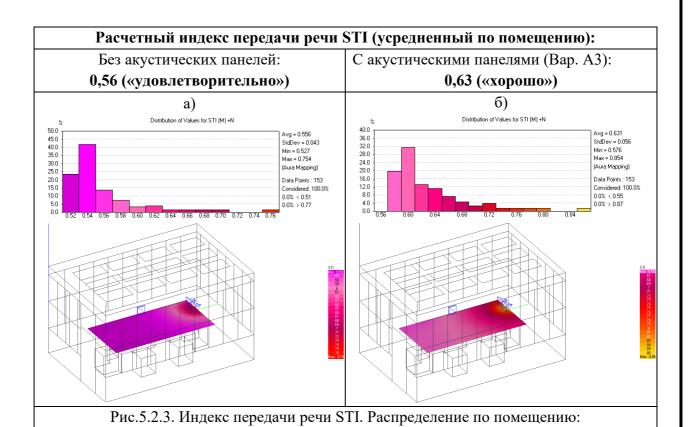



Рис. 5.3.2. Время реверберации Т30 в октавных полосах частот. Расчетные значения без акустической отделки и с акустической отделкой (Вар. Б3) в сравнении с коридором оптимумов.

а - без акустической отделки, б - с акустической отделкой (Вариант Б3)

Заключение

В рамках выполнения работ достигнуты следующие результаты:

- 1. Проанализированы акустические требования к небольшим помещениям речевого назначения, сформулированы усредненные оптимумы времени реверберации в модельном помещении переговорной;
- 2. Проанализированы акустические условия в модельных переговорных с двумя вариантами потолка (ж/б и подвесной потолок из жестких панелей) и трех вариантах остекления (на 2 стенах, на 1 стене и без остекления) без применения акустической отделки, по результатам расчетов сделаны выводы о недостаточной разборчивости и избыточной реверберации и необходимости внесения звукопоглощающих материалов.
- 3. Для модельного помещения с ж/б потолком сравнены решения с размещением акустических панелей только на стенах, только на потолке и в комбинированном размещении. Показано, что комбинированная отделка обеспечивает более низкое время реверберации, что связано с более равномерным распределением звукопоглощения.
- 4. Разработаны типовые решения по акустической отделке с использованием акустических панелей TAGinterioTM PET art:
- для помещений с ж/б потолком с расположением панелей на потолке и стенах (см. раздел 4);
- для помещений с подвесным потолком с расположением панелей только на стенах (см. раздел 5).
- 5. Для каждого из типовых решений произведен подтверждающий расчет времени реверберации в октавных полосах частот, а также расчет индекса передачи речи STI на компьютерной акустической модели. Результаты расчетов показывают, что с учетом акустической отделки расчетное время реверберации укладывается в заданный коридор оптимумов, а индекс STI возрастает до значений не ниже 0,6 («хорошо»).

Литература

- 1. Свод правил СП 51.13330.2011. «Защита от шума» (актуализированная редакция СНиП 23-03-2003). М., 2011.
- 2. DIN 18041-2016 Acoustic quality in rooms Specifications and instructions for the room acoustic design
- 3. ISO 22955:2021 Acoustics Acoustic quality of open office spaces
- 4. ACCOR Hotels Technical Corporate Standard. Acoustics (DA0040), 2009
- 5. Hilton (Hotels) Brand Standarts Europe, 2017
- 6. Acoustics of Schools: a design guide. Published in 2015 by the Association of Noise Consultants and the Institute of Acoustics, UK.
- 7. AS/NZS 2107:2000 Australian/New Zealand StandardTM «Acoustics—Recommended design sound levels and reverberation times for building interiors»
- 8. JCU Design Guidelines Section 18. Acoustics. James Cook University-Australia, 2014.
- 9. HK-BEAM 4/04 "New Buildings" An environmental assessment for new buildings. Hong Kong, 2004
- 10.IEC-60268-16 (2020). Sound system equipment Part 16: Objective rating of speech intelligibility by speech transmission index (Оборудование звуковых систем. Часть 16. Объективная оценка разборчивости речи по индексу передачи речи).